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Abstract 
 
As a kind of complicated mechanical component, rolling element bearing plays a significant role in rotating ma-

chines, and bearing fault detection benefits decision-making of maintenance and avoids undesired downtime cost. 
However, extraction of fault signatures from a collected signal in a practical working environment is always a great 
challenge. This paper proposes an improved combination of the Hilbert and wavelet transforms to identify early bear-
ing fault signatures. Real rail vehicle bearing and motor bearing data were used to validate the proposed method. A 
traditional combination of Hilbert and wavelet transforms was employed for comparison purpose. An indicator to 
evaluate fault detection capability of methods was developed in this research. Analysis results showed that the extrac-
tion capability of bearing fault signatures is greatly enhanced by the proposed method.   
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1. Introduction 

Rolling element bearings are widely used in many 
industrial fields to provide support of shafts. The 
health condition of bearings affects the desired output 
of machines. However, bearings are prone to failure 
due to many factors such as incorrect design or instal-
lation, corrosion, poor lubrication and plastic defor-
mation [1]. As a result, bearings frequently have local 
defects including cracks, pits and spalls on the sur-
faces of raceways, cage, and rollers. Serious bearing 
fault may cause unplanned breakdown and accidents, 
and destroy the decision-making plan of maintenance 
as well. Therefore, fault detection and diagnosis of 
bearings in rotating machines is significant. However, 
it is a great challenge to extract early bearing fault 
signatures from collected signals because (a) compo-

nents such as inner races, outer races, rollers, and 
cages in a rolling element bearing result in the com-
plication of bearing vibration signals, and (b) the col-
lected signal is always polluted by background noise 
and mixed with vibration signals of shafts, gears, and 
other mechanical components.  

If a failure occurs on a working surface of bearing 
elements, impact will be generated when a mating 
element encounters the failure one. Sharp transient 
response accompanied by damped oscillation should 
occur in measured vibration signals. The information 
of bearing condition is expected to be extracted from 
this transient behavior in vibration signals. In addition, 
the observed signal may present a modulation phe-
nomenon caused by the resonance vibration stimu-
lated by a bearing failure and bursts of exponentially 
decaying vibration. Bearing fault features may be 
extracted from a spectrum analysis of the signal enve-
lope (i.e., the spectrum of the bursts of exponentially 
decaying vibration). However, direct spectrum analy-
sis of the envelope of a raw signal may not always be 
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effective because of the complexity of the collected 
signal. Therefore, researches have been conducted to 
focus on the envelope analysis from the signal located 
in certain specific frequency bandwidth. Jiménez et al. 
[2] used Hilbert and Wavelet transforms to make the 
fault diagnosis easier. 

Wavelet analysis is able to decompose a signal into 
different scales corresponding to different frequency 
bandwidth [3] and has been used to extract machine 
fault signatures. Miao et al. [4] evaluated machine 
health condition based on wavelet transform and ex-
tracted a quantitative description of whole life rotat-
ing machinery. Sun and Tang [5] employed continu-
ous wavelet transform (CWT) to detect abrupt 
changes in bearing vibration signals. Unfortunately, 
many samples are needed to obtain enough bearing 
signatures because the frequency ranges of the bear-
ing vibration signals are usually wide, which requires 
a high sampling frequency according to the Shannon 
sampling theorem [6-7]. In addition, enough CWT 
scales should be adopted to catch the desired fre-
quency resolution. Therefore, CWT may be time 
consuming to analyze bearing vibration signal. Dis-
crete wavelet transform (DWT) comes from the dis-
cretization of CWT scales. Mori et al. [8] analyzed 
the approximation and detail coefficients of the DWT 
for bearing fault detection. Prabhakar et al. [9] also 
employed DWT to detect single and multiple faults in 
ball bearings. Therefore, wavelet analysis may have 
the potential to further extract signatures from the a 
signal located in specific frequency bands with the 
help of Hilbert spectrum analysis. Tse et al. [10] pro-
posed a method of wavelet analysis and FFT with 
envelope detection to extract bearing faults. Jiménez 
et al. [2] used Hilbert and wavelet transforms to detect 
faults in induction motors. Fan and Zuo [11] proposed 
a method based on Hilbert and wavelet packet trans-
forms to detect gear faults. However, the accessible 
literatures on bearing fault detection using Hilbert and 
wavelet transforms are very limited. Additionally, 
some potential advantages of Hilbert transform for 
fault detection have not been fully developed and 
employed yet. 

With the motivation to improve the capability of 
bearing fault detection, a signal analysis method 
based on Hilbert and wavelet transforms is proposed 
in this study, which applies the Hilbert transform 
twice. The rest of this paper is organized as follows. 
In section 2, both Hilbert and wavelet transforms are 
briefly introduced. A potential benefit of Hilbert 

transform is discussed. An improved method for bear-
ing fault detection is proposed in Section 3. In Section 
4, the real vibration data of both rail vehicle bearing 
and motor bearing are used to evaluate the proposed 
method. An indicator to evaluate the fault detection 
capability of these methods is proposed as well. A 
comparison study is conducted to demonstrate the 
advantages of the proposed method. Finally, conclu-
sions and discussion are given.  

 
2. Brief review of Hilbert and wavelet trans-

forms  

2.1 Hilbert transform 

Assume a piece of signal ( )x t  and its Hilbert trans-
form [ ( )]H x t which is defined as [12-13]:  

 
1 ( )[ ( )] xH x t d

t
τ τ

π τ
+∞

−∞
=

−∫        (1) 

 
where t and τ are time and translation parameters, 
respectively. It is well known that the Hilbert trans-
form is a time-domain convolution that maps one 
real-valued time-history into another and it is also a 
frequency-independent 90o  phase shifter. So, it does 
not influence the non-stationary characteristics of 
modulating signals. In actual application, modulation 
is usually caused by machine faults. Hence, in order 
to find fault related signatures, demodulation has to 
be done. Fortunately, this requirement may be com-
pleted by construction of analytic signal, which is 
given by 
 

( )( ) ( ) [ ( )] ( ) tB t x t iH x t b t eφ= + =             (2) 
 

where 2 2( ) ( ) [ ( )]b t x t H x t= + , [ ( )]( ) arctan
( )

H x tt
x t

φ = , 

and 1i = − . ( )b t  is the envelope of ( )B t .  
The Fourier transform of signal ( )B t is notified 

by ˆ( )B iω  and its properties are provided as [14]: 
 

ˆ2 ( ) 0ˆ( )
0 0

x i
B i

ω ω
ω

ω
≤⎧

= ⎨ <⎩
                 (3) 

 
where ω  denotes the angular frequency of ˆ( )B iω  
and ˆ( )x iω  is Fourier transform of ( )x t .  

On one hand, the Hilbert transform can demodulate 
modulated signals and extract modulating signals. On 
the other hand, we observe in our research that the 
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spectrum analysis of an envelope signal obtained 
from an analytic signal is able to enhance the ampli-
tude of an original signal by Eq. (3), which may be 
useful to increase the amplitude of bearing fault sig-
natures for visual inspection. To explore the potential 
of the Hilbert transform in bearing fault detection, a 
simulated signal is analyzed, which is given as fol-
lows: 

 
4

60( 0.201 )

0

( ) 20sin(350 ( 0.201 )

( ) [0,1]

t k

k

x t t k e

rand t t

− −

=

= ⋅ − ⋅

+ =

∑    (4) 

 
where k is an integer, and ( )rand t  denotes a 
normally distributed white noise. 

60( 0.201 )20sin(350 ( 0.201 ) t kt k e− −⋅ − ⋅  is used to simulate 
the impulse signal. The time interval between every 
two adjacent impulses is 0.201 second which corre-
sponds to a characteristic frequency of 1/0.201=4.975 
Hz. 

The impulse signal, noise, and their mixture are 
plotted in Figs. 1(a)-(c), respectively. We then ana-
lyze the mixed signal in Fig. 1(c) using two methods: 
(1) perform the spectrum analysis of the envelope  
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(a) A signal containing four impulses 

(b) A normally distributed white noise 
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Fig. 1. The simulated signals. 

 

0 10 20 30 40 50
0

100

200

300

400
 

A
m

pl
itu

de
 

Frequency (Hz) 

+  : Using HT twice 
•   : Using HT once 

 
 
Fig. 2. The spectrum analysis of the envelopes obtained by 
Hilbert transform once and twice, respectively. 

obtained by Hilbert transform once, and (2) perform 
the spectrum analysis of the envelope obtained by 
Hilbert transform twice. The analysis results obtained 
by both of the above methods are shown in Fig. 2. 
Though the amplitudes of the Hilbert transform twice 
are not exactly the double of those of single Hilbert 
transform, it is able to find that the amplitude of the 
result using Hilbert transform twice is obviously 
higher than that of the result obtained by Hilbert 
transform once at the characteristic frequency 4.975 
Hz and its harmonics. This demonstrates that the im-
plementation of the Hilbert transform twice can en-
hance the amplitudes located at the characteristic 
frequency and its harmonics. We also notice that the 
changes of other frequency components are too weak 
to be ignored. This priority may have great potential 
to extract bearing fault signatures.  

 
2.2 Wavelet transform 

Continuous wavelet transform of a finite-energy 
signal can be defined as the integral of a signal ( )x t  
multiplied by scaled and shifted versions of a basic 
wavelet function ( )tψ  [3], as:  

 
1( , ) ( ) ( ) ,

R

t bW a b x t dt a R b R
aa

ψ ∗ +−
= ∈ ∈∫  (5) 

 
where R+  and R  are the positive real number and 
real number, respectively. a  and b are the scaling 
parameter and the translation parameter, respectively. 
∗  means the conjugate operation. The Fourier trans-
form of ( )tψ  satisfies the following admissibility 
criteria [3]:  
 

2 1ˆ ( )
R

C dψ ω ψ ω ω −= < ∞∫                 (6) 

 
where ˆ ( )ψ ω  denotes the Fourier transform of ( )tψ . 

According to Eq. (5), we know that ( , )W a b  is de-
fined on an a-b plane, where a and b are used to adjust 
the frequency and time location of wavelet ( )tψ  by: 

 

( , )

1( ) ( ) ,a b

t bt a R b R
aa

ψ ψ +−
= ∈ ∈       (7) 

 
Here, a  is used for energy preservation. A 

small parameter a corresponds to high-frequency 
components. Parameter b represents the location of 
wavelet function in time domain. According to Eq. 
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(5), wavelet coefficient ( , )W a b  is able to measure 
the similarity between signal ( )x t  and wavelet 

( )tψ  at different frequencies determined by scale 
parameter a and different time locations determined 
by parameter b. 

Discrete wavelet transform is derived from CWT, 
where scales and positions are commonly chosen 
based on a power of 2, i.e., dyadic scale and positions 
[15], through  

 
2 , 2 , , {0, 1, 2,...}.j ja b k j k= = = ± ±      (8) 

 
The discrete wavelet function and the scaling func-

tion are defined as: 
 

/ 2
, ( ) 2 (2 )j j

j k t t kψ ψ− −= −                 (9) 
/ 2

, ( ) 2 (2 )j j
j k t t kφ φ −= −                  (10) 

 
DWT can be implemented by filter operation. The 

filters used in DWT contain a high-pass filter (wave-
let filter) and a low-pass filter (scaling filter) that are 
constructed, respectively. 

 
1( ) ( ), (2 ) ( 1) (1 )
2

ng n t t n h nψ ψ= − = − −  (11) 

1( ) ( ), (2 )
2

h n t t nφ φ= −                (12) 

 
A fast wavelet transform proposed by Mallat [15] is 

able to perform two opposite operations: decomposi-
tion and reconstruction. In decomposition, a discrete 
signal is convolved with a low pass filter and a high 
pass filter, respectively. Letting 0( ) ( )x t A t= , the de-
composition process can be repeated as follows 

 
1( ) ( ) ( ),j j jA t A t D t− = +                   (13) 

 
where ( )jA t  and ( )jD t  are called approximation 
and detail at the Jth decomposition level, respectively. 
In reconstruction, a pair of low-pass and high-pass 
reconstruction filters are convolved with ( )A t  and 

( )D t , respectively. 
The wavelet tree of wavelet decomposition at level 

4 is shown in Fig. 3. ( )jA t  includes / 2 jN  coeffi-
cients, where N is the length of signal ( )x t . The 
information obtained by DWT on each scale corre-
sponds to a frequency bandwidth 1/ 2 j

sF + , where sF  
is a sampling rate. The original signal can then be 
reconstructed by the sum of ( )jA t  and ( )jD t  by Eq. 

)(1 tA  )(1 tD  

)(2 tA )(2 tD  

)(3 tA )(3 tD

)()( 0 tAtx =  

 
 
Fig. 3. An example of a four-level wavelet decomposition 
tree. 

 
(13). It is also easy to obtain a reconstructed signal in 
a desired frequency bandwidth by setting wavelet 
transform coefficients beyond the desired frequency 
bandwidth to zero.  

 
3. The proposed method for bearing fault sig-

nature extraction 

For a collected signal ( )y t , a pre-process is neces-
sary to relieve the influence of random variables be-
fore the proposed method. This process can be im-
plemented as 

 
( )( ) y t yx t
σ
−

=                           (14) 

 
where ( )x t  is the pre-processed signal, y  is the 
mean value of ( )y t , and σ  denotes the standard 
deviation of ( )y t .  

In bearing fault detection, the amplitude of the en-
velope spectrum of a normal bearing is distributed 
randomly and evenly over the entire frequency do-
main. On the other hand, for a faulty bearing, the 
amplitudes of a characteristic frequency and its har-
monics become dominant over other frequency com-
ponents [16]. The modulated signal can be demodu-
lated by using Eq. (2), and thus the fault related signa-
tures can be exhibited. To better explore fault-related 
information, DWT can be used to divide finer fre-
quency ranges. The flow chart of the proposed 
method in this paper is shown in Fig. 4, which in-
cludes following steps:   
Step 1. Load an original signal ( )y t  and preprocess 
it to obtain ( )x t  by Eq. (14). Perform Hilbert trans-
form to obtain the analytic signal of ( )x t , and extract 
the envelope signal. 
Step 2. Decompose the envelope obtained in step 1 
using DWT. 
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Step 3. Because the resonant vibration existing in a 
high frequency bandwidth may be stimulated by a 
bearing fault, the detail signals are chosen to extract 
fault characteristics. Reconstruct detail signals ( )jD t  
based on the wavelet coefficients obtained in Step 2. 
Step 4. Perform Hilbert transform of all reconstructed 
signals in high frequency bandwidth to obtain the 
analytic signals located in different high frequency 
bandwidth. 
Step 5. Perform spectrum analysis of envelope b2_j(t) 
corresponding to ( )jD t . 
Step 6. Select the optimal envelope spectrum from 
those obtained in Step 5. 
Step 7. Identify bearing characteristic frequency and 
its harmonics. 

There are many wavelets available, and Morlet 
wavelet [17-18] and Daubechies wavelet were com-
monly used when performing wavelet transform. For 
instance, the research of Prabhakar [9] and Fan and 
Zuo [11] showed the feasibility of Daubechies wave-
lets. Prabhakar et al. employed DWT to find ball 
bearing race faults at the fourth level. Fan and Zuo 
used the combination of Hilbert transform and wave-
let packet to diagnose gearbox faults at the fourth 
decomposition level. For the same reason, Daube-
chies wavelet is utilized to analyze vibration signals 
and decomposition level is established at four.  

Similar to the idea of Fan et al. [16], an improved 
envelope spectrum amplitude index is proposed to 
select the optimal envelope spectrum of all 

( )jZ t , 1,2, ,j J= L , in step 6.  
 

Load an original signal and pre-process it to obtain )( tx   

Let )]([)()( 22
1 txHtxtb +=  

Wavelet decomposition of b1(t) at level J

Reconstruct details },,2,1|)({ JjtD j L=  of b1(t)

Fault feature extraction  

Let )]([)()( 22
_2 tDHtDtb jjj +=  

Perform spectrum analysis of b2_j(t) and select the 
optimal spectrum 

Start 

End 
 

 
Fig. 4. The flow chart of the proposed method. 

First, to reduce the undesirable end effects of a sig-
nal envelope, a new envelope signal is obtained: 

 
( )

( ) ( ) j
j j

Z t
E t Z t

N
= − ∑                  (15) 

 
where N presents the length of ( )jZ t . 
Secondly, a spectrum analysis of ( )jE t is performed 
by: 
 

2( ) ( ) ift
j jES f E t e dtπ+∞ −

−∞
= ∫                 (16) 

 
In Eq. (16), ( )jES f denotes the absolute value of the 

Fourier transform amplitude of the new envelope 
obtained by Eq. (15). The characteristic frequency 
and its harmonics become dominant in the frequency 
domain when bearing faults occur. Comparison with 
normal bearing shows that the total summation of 
the envelope spectrum increases dramatically for a 
faulty bearing. Therefore, for each ( )jES f , it is fea-

sible to use both *max{ ( ) | 1,2, ,5}jES kf k = L  and 

* * *,2 , ,5

( )j
f f f f

ES f
=
∑

L

 to express an obvious fault char-

acteristic frequency in the frequency domain and total 
contribution caused by fault characteristic frequency 
and its harmonics, respectively. Usually, integer k is 
suggested from 1 to 5. *f  represents the fault char-
acteristic frequency. k means the harmonic order of 

*f . This provides an optional way to select optimal 
jZ , which contains the most valuable information 

explained above. Hence, the envelope spectrum am-
plitude index is defined by: 
 

* * *

*
10

,2 , ,5 ,

log {max{ ( ) | 1,2, ,5}

( )} 1,2, ,
j j

j
f f f f

ESI ES kf k

ES f j J
=

= =

× =∑
L

L

L
  (17) 

 
In typical application, rolling elements in a bearing 
may slide and the machine speed may have some 
fluctuation. Thus, *f  may not exactly match the 
calculated value based on the size and parameters of 
bearings. Therefore, we focus on both * 2f ± Hz 
and *( 2)k f× ±  in this study and the logarithm for-
mat is used in Eq. (17). Therefore, the largest jESI  
can be used to select the optimal envelope spectrum 
of jZ  for fault signature extraction.  

Then, the optimal envelope spectrum ( )ES f  of 
( )jZ t  by Eq. (17) is obtained. It can also be found 
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that the amplitudes at the bearing fault characteristic 
frequency and its harmonics should be enhanced 
compared with those obtained by the traditional com-
bination methods of Hilbert and wavelet transforms, 
in which Hilbert transform was used only once. 

To evaluate the capability of the proposed method, 
an indicator is proposed in this paper. The construc-
tion of the proposed indicator is as follows: 
(1) Obtain the mean value of the summation of enve-

lope spectrum: 
 

1

0

1 ( )
M

f

E ES f
M

−

=

= ∑                         (18) 

 
where M represents the length of the envelope 
spectrum, and ( )ES f  denotes the envelope 
spectrum obtained by the proposed method or 
traditional combination of Hilbert and wavelet 
transforms.  

(2) Choose the biggest amplitudes located at the fault 
characteristic frequency such as * 2f ± Hz and its 
harmonics *( 2)k f× ± . The biggest amplitude is 
denoted by *k f

A
×

. 

(3) The proposed indicator is defined by: 
 

( ) k f
A

Ind k
E

∗×=                         (19) 

 
4. Case studies 

4.1 The rail vehicle bearing fault detection 

In the first experiment, a set of real bearing data 
was obtained through rail vehicle bearings running on 
a test rig. The sampling frequency was 32768 Hz. The 
length of each data set was 32768 points. Table 1 
shows specifications of bearings. The rotating speed 
of the bearing shaft was 9.5rrf = Hz. The character-
istic frequencies of bearing faults are calculated by 
using the equations in [19] and are shown in Table 2. 
The parameters have the same meaning as those in 
Table 1. 

The raw signals collected from a normal bearing, a 
bearing with a serious inner race fault, and a bearing 
with an early outer race fault, are shown in Figs. 5(a)-
(c) respectively. As we explained previously, Daube-
chies-9 wavelet was selected in this research for sig-
nal analysis and synthesis. The decomposition level is 
fixed as four. 

Table 1. Rail vehicle bearing specifications. 
 

Number of rollers 23 

Contact angle β  (deg) 9 

Pitch diameter D (mm) 203 

Mean roller diameter d (mm) 21.4 

 
Table 2. The characteristic frequencies of rail vehicle bearing 
faults. 
 

Bearing  
components Characteristic frequencies (Hz) 

Bearing  
components 

(1 cos ) 4.25
2
rr

rC
f df

D
β= − =  

Inner race  
frequency 

(1 cos ) 120.63
2

rr
rI

nf df
D
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Outer race  
frequency 

(1 cos ) 97.87
2

rr
rO

nf df
D

β= − =  

Rolling spin  
frequency 

2[1 ( cos ) ] 44.57
2

rr
rR

Df df
d D

β= − =
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(a) A normal bearing 

(b) The bearing with a serious inner race fault 

(c) The bearing with an early outer race fault 
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Fig. 5. The raw vibration signals of rail vehicle bearings.  

 
When normal bearing data are analyzed firstly us-

ing the proposed method, the envelope spectra of 
1 2 3( ), ( ), ( )Z t Z t Z t , and 4 ( )Z t , which correspond to 
1 2 3( ), ( ), ( )D t D t D t , and 4 ( )D t , are plotted in Figs. 

6(a)-(d), respectively. From the results obtained in Fig. 
6, no fault characteristic frequency and its harmonics 
can be identified.  

Then, the data of bearings with serious inner 
race fault are investigated; the envelope spectra of 

1( )Z t , 2 ( )Z t , 3 ( )Z t  and 4 ( )Z t , which correspond 
to 1 2 3( ), ( ), ( )D t D t D t , and 4 ( )D t , obtained by the  
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Fig. 6. The analysis results of the rail vehicle normal bearing 
obtained by the proposed method. 
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Fig. 7. The analysis results of the rail vehicle bearing with a 
serious inner race fault obtained by the proposed method.  

 
proposed method are shown in Figs. 7(a)-(d), respec-
tively. It is obvious that Fig. 7(b) contains the    
most fault-related signatures. The same results can  
be also gained through Eq. (17). After calculation, 

2 6.8555ESI = is the largest value among all jESI .  
The proposed method is extended to the data of 

bearings with an early outer race fault (Fig. 5(c)) at 
the fourth level with dB9. Fig. 8. shows the obtained 
results. 1( )Z t  with the biggest 1 6.5861ESI =  is  
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Fig. 8. The analysis results of rail bearing with an early outer 
race fault obtained by the proposed method. 

 
selected to detect bearing fault signatures by using Eq. 
(17). Compared with Figs. 8(b)-(d), Fig. 8(a) shows 
the best performance in identification of characteristic 
frequencies, which proves that the proposed index is 
correct for choosing the most useful fault-related sig-
natures. 

For comparison, the traditional combination of Hil-
bert and Wavelet transforms (dB9 wavelet, DWT at 
the fourth level) is used in the study. Analysis results 
of bearings with outer race and inner race faults are 
shown in Fig. 9(a) and (b), respectively. In Fig. 9(a), 
fault characteristic frequency rIf  and its second 
harmonics are dominant in the frequency domain. 
Other harmonics are hardly visible. In Fig. 9(b), only 
the peaks at rof and 2 rof are clear. It is hard to iden-
tify harmonics of rof . Therefore, the proposed 
method is better than the traditional method. 

To further compare the effect of the two methods, a 
proposed indicator ( )Ind k  is employed to quantita-
tively evaluate the capability of the fault diagnosis. 
Figs. 10 and 11 show the indicator for the bearing 
with a serious inner race fault and the indicator for the 
bearing with an early outer race fault, respectively. In 
Figs. 10 and 11, we can clearly find that the indicators 
obtained by the proposed method are larger than those 
obtained by the traditional method. This result shows  
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Fig. 9. The rail vehicle bearing analysis results obtained by 
the traditional combination of Hilbert and wavelet transforms 
(dB9wavelet, DWT at the fourth level). 

 

1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

35 

In
d 

The order of harmonics (k) 

○: the proposed method 
△: the traditional method 

 
 
Fig. 10. The indicators for the rail vehicle bearing with a 
serious inner race fault.  
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Fig. 11. The indicators for the rail bearing with an early outer 
race fault.  

 
that the proposed method has better capability in 
bearing fault detection. 

 
4.2 The motor bearing fault detection 

To further verify the proposed method, the real 
motor bearing data picked up with a sampling fre-
quency 12K Hz by an accelerometer placed at the 6 
o’clock position at the drive end of the motor hous-
ing, is analyzed as well. Single point faults were 
introduced to normal bearings using electro-
discharge machining with a fault diameter of 0.007 
inches, and the fault depth was 0.0011 inches. The  

Table 3. Motor bearing specifications (inches). 
 

Inside Diameter 0.9843 

Outside Diameter 2.0472 

Thickness 0.5906 

Ball Diameter 0.3126 

Pitch Diameter 1.537 

 
Table 4. The characteristic frequencies of motor bearing 
faults (Hz). 
 

Inner race frequency mIf = 5.4152 mrf× =160.02 

Outer race frequency mOf = 3.5848 mrf× =105.93 

Cage frequency mCf = 0.39828 mrf× =11.77 

Rolling frequency mRf = 4.7135 mrf× =139.28 
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Fig. 12. The raw vibration signals of the motor bearing with 
an outer race fault.  

 
specifications of bearings are shown in Table 3. The 
characteristic frequencies of the bearing are calculated 
in Table 4. The shaft speed of bearings is mrf =29.55 
Hz. The original vibration signal is shown in Fig. 12.  

Wavelet analysis of the signal in Fig. 12 is per-
formed using dB9 at the fourth level to obtain the 
detail signals 1 2 3, ,D D D , and 4D . The envelope 
spectra of 1 2 3, ,Z Z Z , and 4Z , which correspond to 

1 2 3, ,D D D , and 4D , are shown in Fig. 13. 1Z  with 
the biggest 1 8.3464ESI =  will be selected.  

The analysis results obtained by the traditional 
combination of Hilbert and Wavelet transforms (dB9 
wavelet, DWT at the fourth level) are shown in Fig. 
14 as well. In Fig. 14, we can extract the fault charac-
teristic frequency at mOf , and its harmonic also can be 
identified visually. To show the advantages of the 
proposed method in this paper, ( )Ind k  is used in 
this section as well, shown in Fig. 15. We can clearly 
find the indicators using the proposed method are 
larger than those using the traditional method. This 
comparison indicates again that the proposed method 
can extract the fault signatures more effectively.  
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Fig. 13. The analysis results of the motor bearing with an 
outer race fault by the proposed method. 
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Fig. 14. The analysis results of motor bearing obtained by the 
traditional method.  
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Fig. 15. The indicators for the motor bearing with an outer 
race fault.  

 
5. Conclusion and future works 

Even though the traditional combination of Hilbert 
and Wavelet transforms is able to detect bearing 
faults, it may exhibit poor performance in identifica-
tion of fault-related signatures. To improve this 
method, a new combination of Hilbert transform and 
wavelet transform is proposed in this paper. In ex-
perimental study, both rail vehicle bearing and motor 

bearing data are employed to comprehensively vali-
date the proposed method. Two indicators are pro-
posed in this research. One is used to select the most 
useful detail signatures when DWT is performed. 
Another is used to evaluate the capability of the pro-
posed method and the traditional method. The ob-
tained results indicate that the proposed method has a 
better visual inspection than the traditional combina-
tion of Hilbert transform and wavelet transform. In 
other words, the proposed method improves the bear-
ing fault detection capability to some extent and this 
benefit can help engineers identify bearing related 
fault signatures clearly. Finally, it should be pointed 
out that the proposed method focuses on the bearing 
fault detection with a fixed rotation speed at the fluc-
tuation range of 2±  Hz. The fault detection of bear-
ings working at greatly variable speed needs further 
research.  
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